Comparison of Gut Microbiota in Obese, Diabetic and Healthy Control Individuals

Yalcin Basaran1, Abdullah Taslipinar1, Sinasi Erol Bolu1, Mehmet Ali Saracli1, Turker Turker1, Coskun Meric1, Cem Haymana1, Kamil Baskoy1, Mustafa Dinc1, Ferhat Deniz2, Mahmut Yazici1, Aydogan Aydogdu1, Alper Sonmez1 and Omer Azal1

1Gulhane Military Medical Academy School of Medicine, Ankara, Turkey
2GATA Haydarpasha Training Hospital, Istanbul, Turkey
Worldwide epidemic of obesity and diabetes!

- Obesity and diabetes are of the greatest public health challenges.
- The prevalence continues to rise at an alarming rate.
What about Turkey?

Population age >20 years

What is the etiology of obesity and diabetes?

• Etiopathogenesis of obesity and diabetes...
 – Lifestyle changes (dietary habits and physical activity level)
 – Genetic susceptibility

• But also...
 – Changes in the gut microbiota composition

What is the gut microbiota?

- Bacteroidetes & Firmicutes: 90%
- Actinobacteria, Proteobacteria, Fusobacteria & Verrucomicrobia: 10%

100 Trillion Friends you didn't know you had
Of Mice...

- Studies in mice imply the imbalance of the gut microbiota as a potential cause of obesity and diabetes...

 - Mice lacking microbiota have significantly less body fat, despite eating more

 - Transfer of the microbiota from normal to these mice results in significant increase in adiposity and insulin resistance

...and Men

- Human studies are conflicting...
 - ↑ Firmicutes/Bacteroidetes (Ley et al., Nature, 2006.)
 - ↓ Firmicutes/Bacteroidetes (Schwiertz et al., Obesity, 2010.)
 - No difference (Arumugam et al., Nature, 2011.)
The purpose of the study...

- To examine and compare the predominant fecal microbiota
 (Bacteroidetes, Firmicutes, Bifidobacteria and Clostridium leptum) of obese, diabetic and healthy individuals

- To demonstrate the causality between the gut microbiota and metabolic parameters
Study design...

Obesity
(n=27, male:20)
(BMI: 40.0±5.6 kg/m²)

Type 2 Diabetes
(n=26, male:18)
(BMI: 28.6±5.1 kg/m²)

Healthy controls
(n=28, male:22)
(BMI: 23.0±1.7 kg/m²)

Exclusion criteria...
- Any chronic disease
- Alcohol consumption/smoking
- Pregnancy/breastfeeding
- Antibiotics, pro-prebiotics within 3 months
- <18 years or >65 years
- History of intestinal surgery
Methods...

- Self-collected fecal samples
- qRT-PCR...
 - To quantify fecal concentrations of Bacteroidetes, Firmicutes, Bifidobacteria (Actinobacteria) and Clostridium leptum (Firmicutes)
Bacterial counts of the study population...

<table>
<thead>
<tr>
<th>Bacteria (cfu/g)</th>
<th>Obesity group (n=27)</th>
<th>Diabetes group (n=26)</th>
<th>Control group (n=28)</th>
<th>p</th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteroidetes</td>
<td>9.5 (4.8-10.0)</td>
<td>9.8 (5.3-10.0)</td>
<td>8.9 (5.7-9.8)</td>
<td>0.067</td>
<td>0.279</td>
<td>0.484</td>
<td>0.084</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>10.0 (6.9-10.0)</td>
<td>**↓**4%</td>
<td>**↓**13%</td>
<td><0.001</td>
<td>0.878</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Bifidobacteria</td>
<td>8.9 (4.9-10.0)</td>
<td>**↓**14%</td>
<td>**↓**28%</td>
<td><0.001</td>
<td>0.798</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Clostridium Leptum</td>
<td>10.0 (8.9-10.0)</td>
<td>**↓**14%</td>
<td>**↓**11%</td>
<td><0.001</td>
<td>0.714</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Correlations...

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Bacterial concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacteroidetes (cfu/g)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>na</td>
</tr>
<tr>
<td>Gender</td>
<td>na</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>na</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>na</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>na</td>
</tr>
<tr>
<td>FPG (mg/dl)</td>
<td>r = -0.238, p = 0.037</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>r = -0.332, p = 0.003</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>na</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>na</td>
</tr>
</tbody>
</table>

BMI (kg/m²)

Waist circumference (cm)

SBP (mmHg)

DBP (mmHg)

FPG (mg/dl)

İnsulin (mU/ml)

HbA1c (%)

HOMA-IR

LDL-C (mg/dl)

TG (mg/dl)

HDL-C (mg/dl)
Parameters affecting the gut microbiota...

<table>
<thead>
<tr>
<th>Bacteria (cfu/g)</th>
<th>Variables</th>
<th>β</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmicutes</td>
<td>BMI</td>
<td>-0.394</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>HbA1c</td>
<td>-0.285</td>
<td>0.011</td>
</tr>
<tr>
<td>Bifidobacteria</td>
<td>Waist circumference</td>
<td>-0.476</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>HbA1c</td>
<td>-0.321</td>
<td>0.003</td>
</tr>
<tr>
<td>Clostridium Leptum</td>
<td>Weight</td>
<td>-0.509</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>FBG</td>
<td>-0.306</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Altered gut microbiota in obesity and type 2 diabetes

Parameters of adiposity (weight, BMI, waist circumference) and glucose control (FPG and HbA1c) determine the altered composition
Perspective...

• Further studies should be carried out to answer the following questions...

 – Are the gut microbiota changes a cause or effect of obesity and diabetes?

 – May manipulation of the gut microbiota – using pro-prebiotics or fecal microbiota transplantation – prevent/treat obesity and diabetes?
Thank you for your attention...